1.5 Three Big Ideas: Geological Time, Uniformitarianism, and Plate Tectonics

In geology there are three big ideas that are fundamental to the way we think about how Earth works.  The ideas are like the sound track to a movie- sometimes we might not even notice them, but at the same time they affect our perceptions of what is happening.  In the rest of this book these ideas may be mentioned explicitly in some cases, but in other cases it will be helpful for you to realize that they are relevant, even if they are not being discussed by name.

1. Geologic Time (Deep Time)

Earth is approximately 4.57 billion years old (4,570,000,000 years), and as was mentioned at the beginning of this chapter, many geologic processes take place over very long periods of time.  The changes themselves might be tiny- over a year, a chemical reaction eats away a few layers of atoms at the surface of a rock. But over time they have a great impact- over hundreds of millions of years a mountain range crumbles into grains of sand that are swept away by rivers.

For geologists who study very, very slow processes, 10 million years might be a short time, and 1 million years might be trivial.  For these geologists, intervals of 1 million years aren’t even useful to consider, because the changes over that time are too small to see in the rock record.

As you read through this book, keep in mind that the well of geologic time is indeed deep, and “ancient” is defined in a whole new way.

Expressing geological time in numbers

Special notation is used for geological time because, as you might imagine, writing all those zeroes can become tiresome.  Table 1.1 shows some common abbreviations you will see throughout this book. We use this notation to describe times from the present, but not to express time differences in the past. For example, we could say that the dinosaurs lived from about 225 Ma to 65 Ma, which is 160 million years, but we would not say that they lived for 160 Ma.

Table 1.1 Abbreviations used to describe geological time
Abbreviation Meaning Example
Ga giga annum
 or billions of years
Earth is 4.57 Ga old.
Ma mega annum
or millions of years
Earth is 4,570 Ma old.
ka kilo annum or thousands of years The last glacial cycle ended 11,700 years ago, or 11.7 ka.

Expressing geologic time using the geologic time scale

The geologic time scale (Figure 1.5) is a way of breaking down geologic time according to important events in geologic history.  Time is broken into eons, eras, periods, and epochs, and these intervals are referred to by names rather than by years.  Giving intervals of geologic time names rather than using numbers makes sense because we won’t always know the age in years (the absolute age) of a rock or fossil, but we can place it in context based on our knowledge of the geologic record.  We can say it is older than or younger than another rock or fossil, and describe its relative age.

Figure 1.5 Geologic Society of America Geologic Time Scale, 2012. [Walker, J.D., Geissman, J.W., Bowring, S.A., and Babcock, L.E., compilers, 2012, Geologic Time Scale v. 4.0: Geological Society of America, doi: 10.1130/2012.CTS004R3C. ]

The tricky thing about the geologic time scale is that the boundaries are always moving.  As our knowledge of the absolute age of an event improves with new discoveries, it might be necessary to nudge a boundary forward or back.  Sometimes we just agree that the original reason for defining a boundary no longer holds.  For example, the Phanerozoic Eon (the last 542 million years) is named for the time during which visible (phaneros) life (zoi) is present in the geological record, and its start was meant to mark the first appearance of these organisms. In fact, we now have evidence that large organisms — those that leave fossils visible to the naked eye — have existed longer than that, first appearing around 600 Ma.

A way to conceptualize geologic time

A useful mechanism for understanding geological time is to scale it down into one year. The origin of the solar system and Earth at 4.57 Ga would be represented by January 1, and the present year would be represented by the last tiny fraction of a second on New Year’s Eve. At this scale, each day of the year represents 12.5 million years; each hour represents about 500,000 years; each minute represents 8,694 years; and each second represents 145 years. Some significant events in Earth’s history, as expressed on this time scale, are summarized in Table 1.2.

Table 1.2  A summary of some important geological dates expressed as if all of geological time were condensed into one year [SE]
Event Approximate Date Calendar Equivalent
Formation of oceans and continents 4.5 – 4.4 Ga January
Evolution of the first primitive life forms 3.8 Ga early March
Formation of British Columbia’s oldest rocks 2.0 Ga July
Evolution of the first multi-celled animals 0.6 Ga or 600 Ma November 15
Animals first crawled onto land 360 Ma December 1
Vancouver Island reached North America and the Rocky Mountains were formed 90 Ma December 25
Extinction of the non-avian dinosaurs 65 Ma December 26
Beginning of the Pleistocene ice age 2 Ma or 2000 ka 8 p.m., December, 31
Retreat of the most recent glacial ice from southern Canada 14 ka 11:58 p.m., December 31
Arrival of the first people in British Columbia 10 ka 11:59 p.m., December 31
Arrival of the first Europeans on the west coast of what is now Canada 250 years ago 2 seconds before midnight, December 31

2. Uniformitarianism

Uniformitarianism is the notion that the geological processes occurring on Earth today are the same ones that occurred in the past.  This is an important idea because it means that observations we make today about geological processes can be used to interpret and understand the rock record.  While this idea might not seem remarkable, it was groundbreaking and even controversial for its time.  Many people who heard about it for the first time thought about the age of the Earth in thousands of years, but uniformitarianism required them to think on timescales almost too vast to comprehend.  For some, this implied questioning the very existence of God.

The Scottish geologist James Hutton initially presented the idea in 1785[1].  Charles Lyell, also a Scottish geologist, paraphrased this idea as “the present is the key to the past” in his book Principles of Geology.[2]  This is how it is often described today.

We should clarify that not all geological processes occurring today were present at all times in the geological past.  For example, some important chemical reactions that happened on Earth’s surface today require abundant oxygen in the atmosphere, and could not have occurred prior to Earth developing an oxygen-rich atmosphere.  Conversely, there was a time in Earth’s history when continents as we know them hadn’t yet developed.  We must be cognizant of the fact that conditions were different at different times in Earth’s history, and take that into account when interpreting the rock record.

Despite the different past conditions on Earth as a whole, there still exist environments today where some of these conditions are present- environments that are like little samples of what Earth used to be like.  This means we can still use present conditions to inform us about the past, but we have to be careful to ensure that the  samples don’t differ in important ways from the ancient environments that no longer exist.

3. Plate Tectonics

It is only within the last 50 years or so that we have been able to answer questions like, “How did that mountain range get there?” and “Why do earthquakes happen where they do?”  The theory of plate tectonics– the idea that Earth’s surface is broken into large moving fragments, called plates– profoundly changed our perspective on how the Earth works.  Figure 1.6 shows 15 of Earth’s tectonic plates, along with arrows indicating the direction the plates move, and how fast they go.  (Longer arrows mean faster motion.)  There are many more plates on Earth which are too small to show conveniently in Figure 1.6.[3]

A map showing 15 of Earth’s tectonic plates. Arrows show rates and directions of plate motions. [SE after USGS, http://en.wikipedia.org/wiki/Plate_tectonics#/media/File:Plates_tect2_en.svg]

Figure 1.6 A map showing 15 of Earth’s tectonic plates. Arrows show rates and directions of plate motions. [SE after USGS, http://en.wikipedia.org/wiki/Plate_tectonics#/media/File:Plates_tect2_en.svg]

Prior to plate tectonics, we had observations but could only guess at mechanisms.  It was like watching the hands on a clock and trying to guess what moves them.  After plate tectonics it was like being able to open the clock and not only watch the gears turn, but realize for the first time that there are such things as gears.  Plate tectonics not only explains why things have happened, but also allows us to predict what might happen in the future.

We will discuss plate tectonics in more detail later, however the key point is that Earth’s outer layer consists of rigid plates that are constantly interacting with each other as they move around the Earth.  The boundaries of plates move away from each other in some places, collide in others, and sometimes just slide past each other. They can move because they are floating on a layer of weak rock that deforms as the plates move along, much the way the filling in a peanut butter and jelly sandwich allows you to slide the top layer of bread around.

Whether the plates move away from each other, collide, or just slide past each other determines things like the locations of mountain belts and volcanoes, where earthquakes happen, and the shapes and sizes of oceans and continents.


  1. Read James Hutton's abstract at http://bit.ly/1j6tIAN. Note that the typeface prints an "s" like an "f."
  2. The 7th edition of Charles Lyell's Principles of Geology (1847) can be found at http://bit.ly/1l3T6Zh
  3. A more detailed map of Earth's tectonic plates can be found at http://bit.ly/1PZHRMZ.

Comments are closed.